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Abstract

The use of a TEMY, (“donut”) mode laser beam has been proposed as a
means of focusing an atomic beam to nanometer scale spot diameters. We
have analyzed the classical trajectories of atoms through a donut mode laser
beam using methods developed for particle optics. The differential equation
describing the first order paraxial lens properties has exactly the same form
as the “bell-shaped” magnetic Newtonian lens first analyzed by Glaser for the
focusing of electrons in an electron microscope objective. We calculate the
first order properties of the lens, obtaining cardinal elements valid over the
entire operating range of the lens, including the “thick” and immersion regimes.
Contributions to the ultimate spot size are discussed, including four aberrations
plus diffraction and atom beam collimation effects. Explicit expressions for
spherical, chromatic, spontaneous emission, and dipole fluctuation aberrations
are obtained. Examples are discussed for a sodium atomic beam, showing that
sub-nanometer diameter spots may be achieved with reasonable laser and atom

beam parameters. Optimization of the lens is also discussed.




1 Introduction

The influence of near-resonant laser light on the motion of atoms in free space has
generated a significant amount of interest over the past few years. In particular, it
has been suggested, and in some ways demonstrated,[1, 2, 3] that an atom beam can
be focused using the forces exerted on the atoms by the laser light. The ability to
focus atom beams suggests a number of interesting applications, including atomic
microscopy, microfabrication, and precise control of atomic beams for precision mea-
surements. Two major considerations in the practical applicability of laser-atom
focusing are the ease with which the focusing process can be modeled, and the ul-
timate resolution attainable. In this paper, we show that for coaxial focusing in a
TEMg, laser beam, the first order (paraxial) focal properties can be exactly modeled
analytically. We also discuss all the major aberrations to show that diffraction limited
spots of order 1 nm can in principle be obtained. ‘

An atom in the radiation field of a near-resonant laser experiences two types of
force.[4] The spontaneous emission force results from the absorption and random
spontaneous emission of photons. This random process is limited by the rate at
which spontaneous emission occurs, and saturates as the laser intensity inc;eases.
The second type of force, the dipole force, is a result of the interaction of the induced
atomic dipole with a gradient in laser beam intensity. This interaction can be made
large by increasing the intensity gradient within the laser beam, and by increasing
the detuning of the laser frequency from the natural resonance frequency of the atom.
In the case of positive detuning, when the laser frequency is greater than the atomic
resonance frequency, the force on the atoms is from the region of higher laser intensity

towards lower laser intensity. The opposite is true for negative detuning, i.e., the force




is toward higher intensity.

In 1978, Bjorkholm et al.[1] demonstrated that an atom beam propagating coaxi-
ally with a Gaussian (TEMgo) laser beam could be focused to about 250 pm making
use of the dipole force. Negative detuning was used so that the atoms were attracted
to the higher laser intensity in the center of the beam. In a subsequent paper[2], they
showed that a spot size of 28 um could be obtained, and examined the limitations on
the ultimate spot size imposed by spontaneous emission processes. In 1988, Balykin
et al.[3] reported experiments using a lens made up of two counter-propagating, di-
verging, Gaussian laser beams oriented transversely to the atom beam. They were
able to obtain the image of two atomic sources, demonstrating real image forma-
tion with a laser-atom lens. While these experiments represent important pioneering
work, both methods of focusing atoms suffer from the same problem if one is con-
cerned with ultimate resolution. In each case, the atoms travel through regions of
high laser intensity, where a significant amount of spontaneous emission occurs. This
acts to increase the amount of random motion in the atomic beam, which effectively
decreases the resolution.

Balykin and Letokhov[5] first analyzed the properties of a laser-atom lens consist-
ing of an atom beam travelling coaxially through the focus of a TEM}, laser beam
(see Fig. 1). Positive detuning is used, so the force is toward the hollow center of the
laser beam. This type of lens has the advantage that the atoms go through a rela-
tively low intensity region, so spontaneous emission is kept to a minimum. Balykin
and Letokhov treated the lens in the thin lens approximation, and analyzed the fo-
cal length, spherical aberration, chromatic aberration, and the effects of spontaneous

emission on the spot size. Their approach was a wave-optical one, in which the atom




propagation was treated by considering the phase change of a de Broglie wavefront
on passing through the lens. Diffraction of the atoms was thus included inherently
in their approach. They found that for reasonable laser and atom beam parameters,
spot sizes of a fraction of a nanometer could be obtained.

Recently, Gallatin and Gould[6] extended the wave optical approach of Balykin
and Letokhov to correctly treat the lens as a thick lens. They used path integral for-
malism to solve Schrdinger’s equation for the propagation of a Gaussian atom beam
in the TEMg, laser field, obtaining focal spot sizes and positions of optimum focus for
a number of realistic cases. They also estimated, in the thin lens limit, the effects of
spherical aberration, chromatic aberration, spontaneous emission and dipole fluctua-
tions. They found that, in contrast to the result of Balykin and Letokhov, spherical
aberration does not vanish for a particular set of laser beam parameters. Further,
they found the largest contributions to the spot size to be diffraction, spherical aber-
ration and dipole fluctuations. Spot sizes of several nanometers were calculated for
the cases they examined.

Our approach to the analysis of the donut mode laser-atomic lens is to treat the
atoms as classical particles moving in the potential generated by the dipole force. We
make use of methods, originally developed for charged particle optics, for calculating
the trajectories of particles in cylindrically symmetric potential fields. Applied to the
donut mode laser-atomic lens, these methods result in a very simple understanding of
the first order focal properties. In fact, the first order paraxial equation is of exactly
the same form as the equation solved by Glaser[7] for electron trajectories in a “bell-
shaped” magnetic electron microscope lens field. A very simple solution exists; which

treats the “thickness” of the lens exactly, and predicts focal lengths and principal




plane locations for both the immersion case (when the image and/or object is within
the field of the lens) and the asymptotic case. The immersion case is particularly
interesting for the donut mode laser-atomic lens because this is where the shortest
focal lengths, and hence the smallest aberrations, occur. As will be discussed in
Section 2, we find that the lens has a minimum focal length, reached when the focal
spot is at the center of the lens and the focal length is equal to the Rayleigh length of
the laser beam. This has important design consequences in that infinitely short focal
lengths cannot be achieved. In addition, the optimum configuration for obtaining the
minimum spot size (in the zero magnification case) is a symmetric arrangement with
the focus at the center of the lens.

Having analytic expressions for the first order properties of the lens, accurate
expressions for contributions to the spot size can be obtained. Aberrations can be
treated exactly, without resorting to a thin lens approximation. We obtain analytic
expressions for spherical and chromatic aberration, as well as compact expressions for
the aberrations arising from both spontaneous emission and dipole force fluctuations.
Diffraction of the atoms is treated as it would be in the case of geometric optics,
i.e., Frauenhofer diffraction of the atom beam is assumed based on the de Broglie
wavelength of the atoms and the angle of convergence of the beam at the focal spot.
This is valid provided the potential does not change rapidly over the scale of an
atomic wavelength, which is essentially the requirement for the WKB approximation.
The effect on the spot diameter of a finite source size, or equivalently, an imperfectly
collimated atom beam, is also very simply obtained knowing the focal length and
principal plane location.

In Section 2, we discuss the solution of the first order paraxial equation of motion




for the atoms in the TEM},; laser field, and the resulting description of the lens
in terms of cardinal elements. Section 3 covers spot size contributions. In Section
4, we discuss numerical examples, comparing our results to those of Gallatin and
Gould,[6] and examining the case of optimum focusing with the shortest focal length.
Optimization of the lens is covered in Section 5, where a practical formula for the net

spot size is derived and minimized.




2 First order lens properties

2.1 Paraxial equation of motion

In this section we derive the first order equation of motion governing the focusing of
a cylindrically symmetric atom beam in the TEMg, laser field. The optic axis, the
axis of symmetry, is the z-axis, with z = 0 located at the center of the laser focus
(minimum beam waist). The equation of motion can be derived from the Lagrangian,
L = (2* + y* + 2%)/2m — U(r, 2) in the standard way[8]. Here,  denotes the atom
velocity along the z-axis, m is the atomic mass, and U(r, z) is the potential energy.
In cylindrical coordinates, assuming that the initial angular momentum about the

z-axis is zero, the radial equation of motion simplifies to

LT

The conservation of energy is used to parameterize this equation in terms of the
distance along the optic axis, z. With this parameterization, the all-orders equation
of motion becomes

d 1 U(r,

z) 1/2 12\-1/2,.1
. ( — A1 4+ ") +

_1/2(1 + r/2)1/2 =0.

(2)

Here, E, is the incident atomic beam kinetic energy, and r’ denotes differentiation of

1 U(r,2)
A

oU(r, z)
2F, (1 or

r with respect to z.
In order to solve eq. (2), we need the potential energy U(r, z) of the atom in the

laser field. The potential energy is given by[4]
RA
U(r,2) = ——-ln 1+ p(r,2)], (3)

where A = w — w, is the laser detuning from the atomic resonant frequency. Here, w

8




and w, are the laser and atomic resonance angular frequencies, and p(r, z), the atomic

transition saturation parameter, is given by

I(r,z) 42
I, 4% +4+4A% (4)

In the expression for p(r,z), 7 is the natural atomic resonance linewidth (in rad/s),

p(r, z) =

I, is the atomic saturation transition intensity, and I(r, z) is the laser intensity dis-

tribution for the T EMg; donut mode, given by

wir? 2L r?
I(T,Z) = SIOW exp [-—w—gm] . (5)

The parameter w, determines the radius of the laser beam at the waist; the peak
intensity is found at a distance w,/+/2 from the axis. The quantity L is the Rayleigh
length, given by L = 7w?/), X is the laser wavelength, w?(z) = w?(1+ 22/ L?), and I,
is the laser intensity at the beam waist, related to the laser power P, by I, = P,/ 2rw?.

The first order solution of eq. (2) involves making the assumptions that U(r, z) <«

E, and ' <« 1. The equation then simplifies to

r + %&?—[{5—(:—’32 =0. (6)
We then expand the potential in r 'around the z-axis. This expansion involves both
the exponential in the expression for the laser beam intensity, and also the logarithm
in the expression for the potential. In order for this to be a valid expansion, we

require r? € w? and p(r, z) < 1. Taking into account the first of these requirements,

the second becomes p, = O(1), where p, is the space-independent part of p(r, z):

g L 7
p0—872+4A21"' ( )
Expanding the potential, we find that the lowest order term is quadratic in r:
hAp,w? ,
= —1t2 0.2 8
UZ(T’ Z) 2w4(z) r ( )
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We note, as pointed out by Balykin and Letokhov,[5] that this quadratic dependence
on r provides the necessary radial dependence of the potential for a Newtonian lens

description. Inserting eq. (8) into eq. (6) results in the first order paraxial equation

of motion

hA  w?
4 —_—f o —
T +p02Eow4(z)r 0. (9)

At this point, we introduce the excitation parameters k and ¢, and rewrite the equa-

tion of motion in dimensionless form. The excitation parameters are

RA L? .
k2 = pomz}-z— (10)
and
P =kK+1 (11)

The dimensionless variables are R = r/L and Z = z/L. With these substitutions,

the first order equation of motion (9) can be written in the simple dimensionless form

k2

RII +

This differential equation can be cast in a form where an analytic solution exists, first
developed by Glaser[7], by making the substitution Z = — cot . We note that ¢ =0
at z = —o0 and ¢ = 7 at z = 400 (see Fig. 2). With this substitution, the equation
of motion becomes

R"+2cot R +k*R=0 (13)

(primes now indicate differentiation with respect to ¢). A further substitution of

R(¢) = y(#)/ sin ¢ results in the simple differential equation
y" + ¢’y =0. (14)
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The general solution to eq. (14) is a linear combination of sin q¢ and cos q¢, which

can be converted into a general expression for the dimensionless trajectory

R(9) = o= (ersingd + cicosd), )

where ¢; and ¢; are constants chosen to specify the trajectory of interest. For example,
a ray moving in the positive z direction initially parallel to the z-axis at a distance

r, is described by the trajectory

_ Tosingg
R(¢) = L gsing’

This trajectory is particularly useful in determining the cardinal elements of the lens;

(16)

an example is shown in Fig. 2.
2.2 Cardinal elements

Since the first order paraxial equation for the donut mode laser-atomic lens is identical
to the equation treated by Glaser in his “bell”-shaped magnetic lens field model, we
can extract all the first order properties of the lens from his work. The lens has
the following important characteristics. (a) It is a thick lens, and hence its cardinal
elements include both principal planes and focal lengths, instead of only a single
focal length. (b) It is a symmetric lens, so principal planes and focal spots for the
image side and object side are located at equal distances from the lens center. (c) For
sufficiently large excitation, the lens can have multiple crossovers. (d) For all image
and object plane locations, even in the immersion case, the lens is still Newtonian in
the sense that the simple Newtonian lens law applies for determining magnification,
image locations, etc., in terms of the cardinal elements of the lens.

The image-side focal point of the lens is determined by considering the initially

parallel trajectory described by eq. (16). A focal point exists for the values of ¢
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(0 < ¢ < 7) which result in R(¢) = 0. This occurs when ¢ = nw/q, where n is an
integer between 1 and the largest integer less than q. Thus the image-side focal points
are given by

zp = Lcot(ﬁqlr-). (17)

We see that for 1 < q < 2, the lens has a single focal point ranging in location from
z = 400 to z = 0. The principal plane locations and focal lengths are determined
from the trajectory of eq. (16) as shown in Fig. 2. Using eq. (16), we obtain the image

side principal plane locations

Zp':

=L cot(%7) (n odd)
{ Ltan(3%) (n even), (18)

and the focal lengths

L
= (— n+1____.
f=(-1) ey ey (19)
The linear and angular magnifications, M and m, are given by
1 2510 &,
M= = (g2, (20)

where ¢, and ¢; are the values of ¢ corresponding to the object and image positions.
We note that, though not required for a treatment in terms of cardinal elements, the
lens behavior is simplest when the number of focal points is kept to one. Hence the
expressions (17-20) are generally used with n = 1.

Fig. 3 shows the behavior of the focal length f and the principal plane location
2p as a function of lens excitation ¢. Several interesting features of the lens become
apparent on examining these curves. For example, all the first order properties of
the lens are determined by a single parameter g, given by egs. (10-11). This makes

characterization of the lens simple, and shows that, at least to first order, there are
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many combinations of incident atomic velocity, laser power, detuning, and laser beam
waist w, which result in identical lens behavior.

Furthermore, as seen in Fig. 3, the focal length goes through a minimum, reached
when ¢ = 2. Thus the lens does not become infinitely strong focusing as the excitation
is increased, as might be expected. Instead, for q > 2, the principal plane moves in the
negative z-direction faster than the focal point as a function of excitation, resulting
in a longer focal length. The shortest focal length occurs when f=Land z,=-L,
l.e., the focal point is at the center of the lens. This is sometimes referred to as
the “telescopic” mode of focusing, because the trajectory enters and leaves the lens
parallel to the z-axis. The minimum focal length condition has important implications
when considering the optimization of the lens, as this is generally a configuration in

which diffraction and some aberrations are minimized.
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3 Spot size limitations

The determination of the ultimate spot size for an initially (nearly) parallel atom beam
brought to a focus at the focal point of the lens is of central importance in the analysis
of the donut mode laser-atomic lens. We consider the contributions of aberrations, as
well as the effects of diffraction and a finite source size (i.e., an imperfectly collimated
atom beam). The aberrations include spherical aberration, chromatic aberration, and
two “diffusive” aberrations, one resulting from spontaneous emission and the other
from dipole force fluctuations. In each case, the ultimate result is an expression for
the full width at half maximum (FWHM) spot diameter of the beam at the focus in
terms of laser and atom beam parameters. To obtain the net spot size, we add all

contributions in quadrature.

3.1 Aberrations

Due to the simple analytic nature of the paraxial solutions to the ray equation, it is
possible to do a fairly rigorous treatment of the aberrations. Though the immediate
interest is in the spot size at the focus for an initially parallel beam, we obtain
expressions for the aberrations in the general case of finite object and image distances.
These will prove useful in cases where the lens is used for imaging. We then consider
the limiting case of zero magnification (i.e., object at —oo, image at the focal point),
and obtain expressions for the FWHM spot diameters. All the aberrations of the lens
are treated with essentially the same method, in which a (small) deviation € from the
paraxial trajectory is calculated. The method is described in several texts on electron
optics.[9, 10, 11] For each aberration, a differential equation for the deviation ¢ is

arrived at, which is the same as the paraxial equation (eq. 12), with an additional

14




Jinhomogeneous term on the right hand side. This inhomogeneous differential equation

is solved by the method of variation of parameters.[12] The method involves choosing
two linearly independent solutions to eq. (12), Ry(Z) and Ry(Z). If we choose Ry(Z)
such that it equals zero at the image plane (Z = Z;), the deviation in R, at the image
plane due to an aberration can be expressed in terms of the following integral (see
e.g. Ref. [9]):

— RQ(Z,) Z;
T mfz,, BAZ)W (R, By, 2)dz, (21)

where W(R, R}, Z) is the inhomogeneous term in the differential equation. The
quantity R, R — R|R; is the Wronskian of the two solutions R; and R,, which is a
constant due to their linear independence.

In the general case, when the object and image planes are both at finite distances
from the lens, it is most useful to define aberration coefficients, which are used for
determining the trajectory error at the image plane for a trajectory R, which orig-
inates on the axis at the object with a slope a,. This trajectory, shown in Fig. 4,
also crosses the axis at the image plane, making an angle o; = o,/|M|, where M
is the linear magnification of the lens. Following electron-optical conventions, we
define spherical, chromatic, spontaneous emission and dipole fluctuation aberration

coefficients Cg, Cdur) Coponty and C§;,,, referred to the object plane, by the following

relations:
Cy
|€spn| = |M|a3 Ifh (22)
Co
lecnr]l = | M|ae Zh' (23)
C: ont
Espont = IMIC!O—E——& (24)
3Cgip
Edip = IM|ao L ’ (25)
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where € is a fractional deviation in the energy of the atom beam, to be discussed below.
Absolute values of € and M are taken so that the aberration coefficients can be related
to spot diameters. The powers of a, used in these definitions are chosen to remove
any a, dependence from the coefficients themselves. That the correct power has been
chosen for each aberration will become clear below. Since the spontaneous and dipole
aberrations are diffusive in nature, the quantities eqpon, and E€dip are interpreted as
RMS values.

To determine the aberration coefficients, we require an explicit expression for the
ray R;. For convenience, we characterize the trajectories in terms of the variable
¢ = arctan Z + /2, instead of Z, and use solutions of the form shown in eq. (15).
We write Ry(¢) = a,h(4), where

sin [g(¢ — ¢.)]
gsin ¢sin ¢,

For R;, we choose an independent solution which has the property Ry(é,) = 1, so

h(¢) = (26)

that at the image plane, R;(¢;) = M. Though we do not need the explicit form of

R,, we note that it is

Ry(4) = 9(¢) = ssl,r;ﬁs si:l[gl((i\‘——z))]]’ 0

where a = ¢, — %tan‘l(q tan ¢,). The trajectories h(¢) and g(#) are the standard
trajectories used for aberration analysis in electron optics.[10]

With this choice of Ry and R;, the denominator in eq. (21) becomes —a,, and we

can write
i N ¥4
= _ —do. 28
e = =M [ H@)W (aoh, ach', ) -do (28)
Using eqs. (22) and (23), we can now write
0 L % ’ d¢
=l A " h(8)Warn (0, a0l 8) 5 (29)
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= [ [ BB Wl )22 (30)

Qo€ Jg, sin?g|’

The expressions for the diffusive aberration coefficients Copont and C§,, are similar to

- eqgs. (29) and (30), though a little more complicated due to the random nature of the

forces involved. They will be discussed in more detail below.
The determination of the aberration coefficients is now reduced to finding the

inhomogeneous terms for each aberration source and carrying out the integral in

eqgs. (29) and (30).

3.1.1 Spherical aberration

Spherical aberration arises when higher order terms in the expansion of the equation
of motion are not neglected. This is a manifestation of the fact that for large enough
r, the potential is no longer simply quadratic in r. Since the potential is cylindri-
cally symmetric, the next higher term is proportional to r¢. The equation of motion
depends on @U/Jr, so its next higher term is of order 3. To correctly include all
terms in r?, we must keep contributions from the expansion of the all-orders equation
of motion (eq. 2) as well as contributions from the expansion of the potential. The

resulting third order inhomogeneous term is

2 2 1
Wn(R, B, Z) = k?m[(po-jg—kz)——l——uL ]

2 1+ 2% 7 “w2(1+ 227
—RRR [(l—f_zﬁ-)-g] — K*RR" [(—11-122—)2] . (1)

Converting Z to ¢ and R to a,h($), we can insert eq (31) into eq. (29) to obtain an

explicit integral for the spherical aberration coefficient:

sph = L Ly 4] /:‘ sin® ¢sin® [g(¢ — 4,)] d¢

di |Po
g*sing, | w? 0
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KL [ I #
pryec [4;03' - 3] /¢° sin [q(¢ — ¢.)] d
KL o
~ g |, sintésin® o(6 - 4,)]dg
IR
Fantg, . necosseonlalé - golan’ (6 eldd|. (39

All the integrals in eq. (33) can be done analytically, and the resulting spherical

aberration coefficient referred to the object plane is given by

o _ L 37k?[ L2 5 + 2k?
b = Sin'g, 8¢° [ng (P +8) - —3 ]
L 1 L? 2 (. 27 .
~ g, @R T 3) [3p°z_v§ +15 — 4k ] (sm(2¢o + 7) - sm(2¢o)) . (34)

In going from eq. (33) to eq. (34), we have made use of the object-image relation

i = do+ -"q—" (35)

obtained from finding the zeros of A(#). In addition, we have restricted ourselves
to the case where n = 1, so eq. (34) is valid only for the first image in a multiple
crossover lens. The absolute value has been dropped because the sign of Cg;, can be
shown to remain unchanged fro all excitations.[9]

The spherical aberration coefficient given in eq. (34) can be used in this form for
any situation in which the object and image positions are finite. However, it is often
convenient to expand the coefficient as a polynomial in 1/M. This is useful if the
main design consideration of a lens is the magnification, or if M is particularly large
or small. It can be shown[10, 11] that Cg,, can be uniquely represented by a fourth

order polynomial, i.e.,

Cs Cs Cs Cs
Copn = Cgpuo + =3 + 200 + 278 + . (36)
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The coefficients of the polynomial can be extracted from eq. (34) via the relationship

= "'_l—'— Cot(m™
— cot ¢, = Msin(z]q) + cot(w/q), (37)

derived from the expression for the magnification eq. (20) and the object-image rela-

tion eq. (35). Substituting eq. (37) into eq. (34), we get the polynomial coefficients

o e 3TRL  [L? 5+ 2k
CsphO - Csph4 - 8q5 sin4(7r/q) [ ( + 8) 3 ]
_ Lsin(2r/q) L? 2
3(4F + 3)sin*(n/q) | oz T 104 (38)
0 3mk2L cos(r/q) 5+ 2k?
sphl sph3 = 2q5 sin4(7r/q) 2103 (Po + 8) - 3
- sseotmal [, 1 ,
a1 3) (e | 2P 15— 4 (39)
0 3rk?L[2 + cos(21r/q)] ( +8)— 5 + 2k?
sph2 = 44¢5 sin*(m /q) 3
_ 3L cos(w/q) E‘l 2
2(4k2 + 3)sin*(7/q) 3p° w? +15 -4k (40)

The expression for Cg,, in terms of M is very useful for most imaging situations,
because the coefficients need only be calculated once and the spherical aberration
is known for all object-image distances. However, it poses a slight problem when

we wish to consider the zero magnification (“parallel-in”) case because becomes

sph

infinite, while o, goes to zero. The spot size, of course, does not become infinite.

The way around this awkwardness is to use the spherical aberration coefficient

sph
defined in terms of the trajectory angle o; at the image plane. We write
el = 322, (41)
which then requires that
Cin = M*C2,, (42)
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where we have used the fact that o; = a,/|M|. Using eqgs. (42) and (36), we find that
C:ph(M = 0) = soph4' (43)

Eq. (41) can now be used to obtain the spot size for the zero magnification case.
To obtain the minimum spot size, we note that the diameter can be taken at the
circle of least confusion, at which point the FWHM spot size 6sph is given by 2 L|egpy|.

For a ray incident at a radius r,, the angle at the image plane is given by

To

o = T ——sm(7r/q) - (44)

The final expression for the spot size due to spherical aberration at the circle of least

confusion then becomes

3rk3r3 L? 5 + 2k?
Soph = 16L2g5sin(7 /q) [2w§ (P +8) = 3 ]
_ _Tracos(r/q) 2
8L2(4k2 o5 [3 = 415 — 4k (45)

3.1.2 Chromatic aberration

Chromatic aberration arises from a finite energy spread in the incident atom beam.
Atoms with different initial kinetic energies follow different trajectories through the
lens, resulting in a smearing out of the focal spot.

The chromatic aberration coefficient can be calculated in an analogous way to the
spherical aberration. The energy E, in the paraxial equation (9) must be replaced by
Eo(1 + €), where € is a fractional energy deviation. When the equation is expanded

and the lowest order terms retained, the following differential equation results:

hAp, w? _ hApo w?
2E, w4(z) 2E w4(z)

= (46)
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We see that the inhomogeneous term in this case is

2
Woe(R, R, Z) = — R, (47)

(1+ 2?)
where conversion to dimensionless variables has been carried out. Substituting this

into eq. (30) and using the object-image relation eq. (35) yields the chromatic aber-

ration coefficient
o _ Tk
hr T 9¢3sin’g,

Eq. (48) is an exact expression for the chromatic aberration coefficient in the finite

(48)

object-image case. As with spherical aberration, it is useful to write it in terms of a
polynomial in the linear magnification M. In this case, it is only necessary to include

powers up to M~2:

o o Cghrl Cghﬂ
Cchr = Cchlo + M + M2 . (49)
The expansion coefficients are given by
rkiL 1
o = Cam = — 50
chr0 chr2 2q3 sin2(7r/q) ( )
rk%L cos(w/q)
dhel = 51
chrl q3 sin2(7r/q) ( )
Converting to the image plane chromatic aberration coefficient, defined by
Ciir
= qje— 52
ol = aze 2, (52)
we obtain

from which we arrive at the FWHM spot diameter for the zero magnification case

k®r, AEy;

6°hr=2q3sin(1r/q) E, ’

(54)

where AE)/; is the FWHM of the energy distribution of the atom beam.
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3.1.3 “Diffusive” aberrations

Since the spontaneous and dipole aberrations are the result of random forces, the
average deviation along a particle trajectory is zero. The deviations from the paraxial
trajectories must therefore be treated in terms of RMS values. The formalism for this
resembles the treatment of Brownian motion[13]. We consider the radial equation of

motion eq. (1) with an additional inhomogeneous force term on the right hand side:

%Qg-%ﬁ - L1ro. (55)

F.(t) is a random force for which < F,(t) >= 0, but < F,(t)F,(t') ># 0. Converting
eq. (55) to a paraxial form, we make the approximation z & v,t, where v, = /2E,/m

is the initial atomic velocity, and write

w, 1 0U(r,z) 1 z
mYSE, o 3B (56)
Converting to dimensionless variables, we can make the association
L LZ
= F.(—).
W(R,R', Z) oF. ( o ) (57)

This allows us to write down an expression for the mean-squared trajectory deviation
similar to eq. (21), though containing a double integral to account for the random
nature of W. To simplify the following expressions, we suppress the explicit R and
R' dependence in W, writing only W(Z) and bearing in mind that some of the Z-

dependence may come through an R- or R’-dependence. We get

Rz
" (RiR; — R\R,)?

Putting, as before, the solution Ry = a,h(®) into eq. (58) and changing variables from

<er>

Zi Z;
/ dz /Z dZ'Ri(Z)Ri(Z)) < W(Z)W(Z') > . (58)

Z to ¢, we obtain expressions for the spontaneous and dipole aberration coefficients

o _ L
spont a,

) . ’ 1/2
[ S [ S HOE) < W W) > (59)

¢o sin’¢ Jg, sin’¢’
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L% do o do 1/2
Clip = a_‘g [/‘#o sinft}-" o sin‘f@h(‘ﬁ)h(‘b’) < Waip(¢)Waip(4') > (60)

In order to make use of eqs. (59) and (60), we must now determine the autocorrelations
of the inhomogeneous terms Wepont and Wy,

The spontaneous emission aberration arises as a result of the random momentum
changes of size h/\ which occur each time a photon is spontaneously emitted. The
average rate at which these changes occur depends on the intensity of the laser,
and, for low intensities, it equals yp/2, where 7 is the natural linewidth of the atomic
transition in rad/s, and p is the saturation parameter given in eq. (4).[4] Over the time
scale of interest, i.e., the time over which the focusing potential changes as the atom
passes through the lens, the momentum changes can be considered as occurring over
an infinitely short time, and to be completely uncorrelated. With this assumption,

we can write

< Fspont(t)Fspont(t,) §7p(r2 Z) (—) 6(t ) (61)

The factor of 2 is a result of averaging over two of the three spatial degrees of freedom
in the spontaneous emission process. Assuming paraxial conditions, the saturation

parameter p(r, z) can be written in terms of ¢ as

[ R L,
p(r,z) = Po‘u‘)zm = poEZR (4) sin*¢. (62)

Combining egs. (57), (61) and (62), we can deduce

- L3h%v,yp,

< Wspont(¢) spont(¢l) >= 12w? E2X"

o B (8)sin®$8(8 — ¢'), (63)

where we have made use of the fact that §(Z — Z') = sin?¢é(¢ — ¢'). Inserting

eq. (63) for the autocorrelation of the spontaneous emission inhomogeneous term into
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the expression (eq. 59) for the aberration coefficient and substituting R(¢) = ah(d),

we obtain

o L*h [Lv,yp, % 4 . 9 1/2
s = e |22 [* (g s (69

Putting in the definition of h(¢) (eq. 26), we get

C° L?h (LUO’YPO Ve /d" Sln4[Q(¢ ¢o)] ae
spont = Aw, E, 12 q2 sin’¢ sin’¢ .

(65)

The integralin eq. (65) is not analytic, so a numerical evaluation of this equation must
be used to obtain the aberration coefficient. In addition, the convenient expansion into
a polynomial in the magnification is not possible. Nevertheless, the expression is still
useful when one is interested in the aberration coefficient for the finite magnification
case.

Since the magnification expansion is not possible, and hence we cannot easily
convert to the aberration coefficient referred to the image plane, another approach
must be taken to obtain the spot size for the zero magnification case. Instead of
letting Ry = a,h(¢) in eq. (58), we can use the “parallel-in” trajectory of eq. (16),
since the choice of solutions in the variation of parameters method is arbitrary. We
note that this trajectory crosses the axis at the focus, so eq. (58) is still valid. A

linearly independent solution is needed for R,, for which we use

Ry = —sin(n/q)———= ofr(rqj) (66)

We note that R; = 1 at the focus (¢ = v/q). The Wronskian of R; and R; is now

—(ro/L)sin(r/q), and we can write

A */a e de!
r2 sm2 (r/q) / sm2¢ sin?¢’

<el>= Ri(¢)Ri(¢) <W(SW(g) >  (67)
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Putting eqs. (63) and (16) into this expression leads to an expression for the zero

magnification aberration coefficient referred to the image plane (defined by gepon =

lailcsipont/L):

. L L3h?v,yp,\* [ (/e sin'qg , 1"
o M= _ o’/ Po
Jepont(M = 0) Zsin’(7/q) (12ng3A2) /o sin’¢ d¢] )

where we have made use of the fact that a; = r,/f = r,sin(x/q)/L. The FWHM

spot diameter follows immediately from this, i.e.,

) L3h2v P 1/2 /e sin4q¢ 1/2
65 ont = 2 21 To o lPo
pont = 2V2In2 ¢*sin(7/q) (12w3 Eg)‘z) /0 sinZs dg| (69)

where the factor of 24/21n 2 provides the conversion from RMS to FWHM.

The dipole fluctuation aberration is treated in an identical manner to the sponta-

neous emission aberration. As has been discussed by Dalibard and Cohen-Tannoudji,[14]

the dipole force can reverse sign temporarily each time a photon is spontaneously
emitted. The fluctuating part of the dipole force which results from this random sign
change can be considered as an inhomogeneous driving term F,(t) in the equation
of motion, for which < F,(t) >= 0 but < F,(t)F.(t') ># 0, just as with sponta-
neous emission. For small saturation parameters p < 1, the autocorrelation of the
fluctuating part of the dipole force can be written as[14]

2

2
hf (Vp)pleh="1, (70)

< Faip(t)Faip(t') >=

Using the expression in eq. (62) for the saturation parameter in the donut mode
laser-atomic lens, letting V — 8/8r, and converting t to LZ/v, as before, we can
write

L4 RG(Z) e_:'%_lz_zll.

< Waip(2)Waip(Z') >= "/APZw_g(l ¥ Z2)8 (71)
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This expression leads to a very complicated integral when conversion is made to the
variable ¢ for calculating the aberration coefficient. It suffices at present to consider
the limit vL/v, 3> 1, which occurs when the number of spontaneous emissions is
large during transit through the lens. The approximation should be good because
the aberration itself is only significant when a large number of spontaneous emission

events take place. In this limit, we can say
e~ HIZ-7 o, i”“a(z z') (72)

We can now write down an approximate autocorrelation in ¢ of the inhomogeneous

term in the differential equation

o a2 L :
< Waip($)Waip(#) >= 2-LKp RO ($)sin™®6 8(4 — ¢) (73)
This can be inserted into eq. (60) to obtain the dipole fluctuation aberration coefficient
. L® (2v, 12 g2p, 6. - 8 1/2
Céip = o (ty‘_,-j) pryEE g [/ sin®$sin® [g(d — o)l dp| . (74)

The integral in eq. (74) is analytic, but extremely cumbersome. Therefore, as with
the spontaneous aberration, we do not perform the expansion in magnification, but
rather leave the expression for the aberration coeflicient as is for use in the finite
magnification case. For the zero magnification case, we proceed as we did with the
spontaneous aberration, making use of the “parallel-in” trajectory for R; in eq. (58).
Using eq. (67) with eq. (73) gives a zero magnification aberration coefficient referred

to the image plane of
1/2

1/2
L 2‘00 k2po "/q + 6 + 8
_— d 75
Ciip(M =0) = (7L) pryE Ty [./o sin®psin®qp dd| ,  (75)
and a FWHM spot diameter of

3 /2 2 n/ 1/2
Sap = 4D (71-.;) ———”———[/0 " sin® psinqd d¢] . ()

q*sin(r/q)
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3.2 Diffraction

The treatment of diffraction is straightforward once the paraxial trajectories are
known. Since the potential in the lens is slowly varying as a function of z on the
scale of the de Broglie wavelength Agp of the atom, we may apply thw WKB approx-
imation, and make a complete analogy with the way diffraction is treated in ordinary
geometric light optics. For a given initial intensity distribution in the atom beam,
the final spot size can be determined from knowledge of the trajectories in exactly
the same manner as it would be for a light beam. For instance, a diffraction-limited
Gaussian atomic beam with a given waist radius and location can be propagated
through the lens with the ray transfer (“ABCD”) matrix derived from the principal
plane locations and focal lengths. The spot size and location can be inferred from
the radius of curvature and beam radius after the lens. Since the lens is Newtonian
in the immersion case as well as in the asymptotic case, this approach is valid even
when the focal spot is inside the lens.

Alternatively, one can assume the atom beam has a constant, circular intensity
distribution formed by real apertures. In this case ordinary Frauenhofer diffraction
is the appropriate optical analogy, and we obtain a simple expression for the FWHM

of the diffracted intensity distribution at the image plane:

Siie = 0.61/‘\.13, (77)

Q;

For a beam initially parallel to the z-axis with radius r,, o is given by r,/f, where

f is the focal length of the lens. Thus the FWHM spot diameter at the focus is

_ 0.61\asL

" r,sin(w/q) (78)

daifix
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3.3 Finite source size

A perfectly parallel beam can be considered as arising from an infinitesimal source at
z = —o0. Of course, any real experiment has a finite source, or object, size d, and a
finite object distance z,. This means that the focal spot will contain an image of the
source, reduced in size by the magnification M = z;/z,. For very large 2,, z; ~ f,
and we can write the FWHM contribution to the spot diameter as
Suouee = Mdy 5 d,, (79)
|20

where d, is the FWHM of the source.

3.4 Net spot size at the focus

Rigorously speaking, it is not possible to predict the net spot size from separate cal-
culations of the individual contributions. The aberrations in general interact with
each other, and with the diffraction and source size effects. Furthermore, in prac-
tice, the net spot size is generally desired at the empirically determined position of
smallest focus. This can be located at fhe focal plane, the circle of least confusion,
or somewhere in between, depending on the relative sizes of the spot size contri-
butions. Nevertheless, an overall sense of the magnitude of the net spot size can
be obtained by combining the various contributions in quadrature. In analysis of a
scanning transmission electron microscope (STEM) column, this approximation has
been demonstrated to give the FWHM spot diameter within 10 percent of the tfue
FWHM as determined by a full wave optical treatment.[15] The types of aberrations,
their relative sizeé, and the other spot size contributions in the STEM are similar

to what is expected for a donut mode laser-atomic lens, so we can assume that the
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approximation is appropriate in our case as well. Thus, as a general, but not precise,

measure of the FWHM net spot diameter, we write

6tot - \/ sph + 52hr + spont + 5¢§1p + 531iﬂ'r + 630urce‘ (80)

The individual FWHM spot sizes are given by eqgs. (45), (54), (69), (76), (78), and
(79), respectively.
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4 Examples

Before discussing specific examples, it is perhaps useful to consider the limitations
imposed by keeping the lens in the first order, paraxial regime. As discussed in section
2.1, we require (a) r? € w?, (b) p, = O(1), (c¢) U(r, z) < E,, and (d) v <« 1. Given
the first two of these requirements, (c) reduces to BA & E,. This is not much of
a limitation on A, since E,/h is usually of order 10'3 — 1014 rad/s. By examining
the slope of the trajectory at the focus, where it reaches its largest value, it can
be shown that requirement (d) is satisfied as long as (a) is true. Clearly the most
limiting restriction is requirement (a). This is especially true when small spot sizes are
desired, since, as will be seen below, the ultimate spot size generally decreases as w,
decreases. Nanometer-size spot diameters will require very small values for w,, which
means the initial atom beam size r, will need to be even smaller. We now discuss
some numerical examples in order to provide a general understanding of the operating
ranges of the donut mode laser-atomic lens. In all examples we consider the focusing
of sodium atoms, using a laser tuned near the 35-3P (D,) transition. The wavelength
of the transisition A = 0.59 pm, the natural linewidth y = 6.28 x 107 rad/s, and the
saturation intensity I, = 10mW/cm?, The mass m is 3.84 x 10~22 g. We calculate six
cases, and also examine the minimum focal length condition. The six cases, originally
selected by Gallatin and Gould,[6] (GG) are chosen with laser powers of 0.1 and 1.0 W
for each of three atomic velocities, 1 x 104, 5 x 10, and 1 x 105cm/s. The laser beam
waist w, is kept at 1.0 gum, making the Rayleigh length L = 5.33 um, and the detuning

is chosen in each case such that p, = 2.
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4.1 First order properties

Using eq. (11) for ¢, and egs. (18) and (19) for the principal plane locations and focal
lengths, it is a simple matter to calculate the first order lens properties. Table 1
shows the results for the six cases discussed by GG, and Figs. 5(a) and (b) shows ray
traces for'ea,ch case. In cases A and D, we see that ¢ > 2, corresponding to a lens
with multiple crossovers. The trajectories shown in Fig. 5 illustrate this. The first
principal planes are well removed from the center of the lens, so the lens is quite thick.
Case C, on the other hand, is very close to a thin lens, since the focal length is long
and the principal plane is near the lens center. Case E has the shortest focal length
of the six cases, and f is close to the minimum value of 5.33 ym. Interestingly, this is
true even though ¢ is not very close to 2. Apparently, there is a relatively wide range
of excitations for which the focal length is close to the minimum, but the principal
plane is in different locations, as can be see in Fig. 3. This has design implications
in that the minimum focal spot diameter, attained at the shortest focal length for a
diffraction limited lens, can be realized over a broad range of excitations.

The last column in Table 1 contains the focal spot locations obtained by GG for a
Gaussian atomic beam with a waist of radius 0.07 ym located at z = —3L. Excellent
agreement is seen in all but the thickest lens cases A and D, where some deviation is
apparent.

The minimum focal length trajectory, the “telescopic” case, is shown in Fig. 5(c).
This occurs when ¢ = 2, which results in f = —z, = L (5.33 pm for w, = 1.0 pm).
Given an initial atomic velocity, and a fixed p, of order one (say p, = 2) the laser

power and detuning necessary to achieve the minimum focal length (MFL) condition
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are uniquely determined. Using the expression for g (eq. 11), we can derive

3E, )\
MFL __ o
A - —_h—w?wg’ (81)

and

18 E? )¢
MFL _ 0
o - ;5712’72-1;)3 ') (82)

where in the last expression we have neglected 7 in the denominator of eq. (7). Table 2
shows the laser powers and detunings required for a MFL lens given the three initial
velocities of the examples above. We note that for moderately low atomic velocities,
the power required is quite small, but increases dramatically as the velocity is raised.
This is because PMFL depends on E2, resulting in a v dependence.

The strong v,-dependence seen here should not be misinterpreted as causing a
large chromatic aberration. It arises because the detuning is increased together with
the velocity, requiring more laser power to keep p, constant. In a real situation, A
would be held fixed, in which case the chromatic aberration would be as discussed in

Section 3.2.2.

4.2 Focal spot sizes

In this section we calculate the FWHM spot diameter contributions arising from each
of the sources discussed in Section 3, using eqs. (45) (54), (69), (76), (78), and (79).
Results are obtained for the six cases discussed above, and also for the minimum
focal length condition. An initial beam radius r, of 0.1 um is assumed. For the
source size aberration, we assume a source of radius 0.1 ym at a distance of 1 cm,
which gives a collimation half-angle of 10~. For the chromatic aberration, we assume
AE,;2/E, =2 x 1073, in accord with Refs. [6] and [5]. Table 3 shows the results for

each spot size contribution in nm in each of the six cases, as well as the quadrature
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sum égor. Several interesting features are apparent in the table. Generally, the largest
contributions are diffraction, dipole fluctuations, and spherical aberration. At low
initial velocity, diffraction is by far the dominant effect, while at high velocities,
the dipole fluctuations become larger. Spherical aberration is larger at the higher
velocities as well, becoming comparable to diffraction in cases C and F. Case E, in
which the focal length is shortest, has the smallest net spot size, as expected. The
chromatic aberration is very small in each case; however, this is somewhat arbitrary,
since the spot size is proportional to AF,/,/E,. The significance of this is that the
restrictions on the fractional energy spread in the atom beam are not as severe as
indicated in earlier work[5, 6]. A part in 10? could in principle be tolerated, as
this brings the spot size contribution to the same order of magnitude as the other
contributions.

To provide a comparison of the diffraction spot size with the results of Gallatin
and Gould, we also consider the propagation of the Gaussian atomic beam with waist
of radius 0.07 ym located at z = —3L. Our results for the 1/¢? waist diameters 20, are
given in Table 4, along with those of GG. Interestingly, the spot sizes are in excellent
agreement for cases B, C, E, and F. Cases A and D do not show such good agreement.
This could perhaps be explained by noting that the principal plane is located very
far out of the lens in these two cases. Thus the waist position z = —3L = —15.99 ym
cannot really be considered to be in a field free region in these cases, as was assumed
by GG.

Spot sizes for the minimum focal length lens are shown in Table 5 for three initial
atomic velocities. The laser power and detuning are those given iﬁ Table 2. At

1 x 10* cm/s, the lens is essentially diffraction limited. At the higher velocities, the
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dipole fluctuation aberration grows as the contribution due to diffraction decreases,
s0 that at a velocity of 1 x 10° cm/s, the contributions are about equal. The spherical
aberration, chromatic aberration, and source size contributions are the same for each

velocity because they depend only on parameters held fixed in the minimum focal

length lens.

34




5 Lens optimization

One of the most useful applications of the explicit expressions for the various spot sizes
obtained in this paper is lens optimization. By examining how each of the aberrations,
diffraction, and the source size contribution depend on the laser and atomic beam
parameters, it is possible to determine what combinations of parameters give the
smallest spot size.

Presuming that a particular atom is chosen, so that the mass m, the wavelength
), the resonant angular frequency w,, and the linewidth v are fixed, there are seven
“free” parameters to be optimized. The laser beam has three parameters available
for optimization, i.e., the power P,, the detuning A, and the waist size w,. Instead
of working directly with P, and A, however, it is more convenient to work with the
lens excitation parameter ¢ and the spatially independent saturation parameter p..
Though these parameters may seem interdependent, examination of the definitions
shows that, given the freedom to choose any P, and A, any values for ¢ and p, can
be obtained.

The atom beam has four parameters which can in principle be selected for mini-
mum spot size: the source size d,, the beam radius at the lens r,, the mean velocity
Vo, and the energy spread AE, ;. Of the seven parameters available for optimization,
three can be identified as not having specific values that minimize any of the spot
size contributions. The parameter p, has no effect on chromatic aberration, diffrac-
tion, or the source size effect, and its effect on the spherical, spontaneous and dipole
aberrations is to reduce them monotonically as it decreases. The source size d, only
affects the source size contribution, which is directly proportional to it. The energy

width AE,, is similar in that it has only a linear effect on the chromatic aberration.
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To obtain the smallest possible spot size, the only option is to make these three pa-
rameters as small as practically possible, or small enough so that the contribution to
the total spot size is negligible.

The remaining four parameters, ¢, w,, r,, and v, affect the spot size contributions
in different ways, causing some to increase, others to decrease, and having no effect on
others. Thus it is reasonable to ask what values of these parameters give the smallest
spot size.

First, let us examine the behavior of the net spot size as a function of the lens
excitation ¢. All the aberrations, with the exception of chromatic, can be made
arbitrarily small with sufficiently large g. The chromatic aberration decreases initially,
but becomes constant for large enough ¢. The diffraction and source size contributions
to the spot size, however, are smallest at the minimum focal length condition ¢ = 2.
Since diffraction and the source size are major contributions to 6o, at the smallest
spot sizes, it seems reasonable to choose ¢ = 2 as an optimum value. Additionally,
this gives the lens symmetry properties, i.e., the focal spot is at the center of the lens,
which could be important for practical reasons.

Let us now let ¢ = 2 and ask how the total spdt size at the minimum focal length
can be minimized with respect to w,, r, and v,. The source size contribution is
not affected by any of these three parameters, so we can ignore it for the present

discussion. With ¢ = 2, the remaining FWHM spot diameters can be written as

9r r3
~ ——(p, - 83
L )
3 AE]/z
_ 3 84
5chr 16 Eo To ( )
752 In2 (vp.\/? h wir,
b = T\ (3) m o (85)
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(86)

(87)

where the spherical aberration spot size is approximated by only the first term in eq.

(45). This is a good approximation because L is generally larger than w,. With egs.

(83)-(87), we can write the square of the total spot size as

6 4,..2 6
6% = A% + Bri+ =22 4 DI2J 4 E
w v

6 292
o 4 w, TaVo

w;

with

O 2

B = |3mAE]
16 E,
7°In2yp, h*
24 A5 m?
819In2 X ,

65536 71°
2

D =

E = 0.372r* h

m2a2’

(88)

(89)
(90)
(91)
(92)

(93)

Optimization of the lens for minimum spot size now consists of minimizing eq.(88)

with respect to the three free parameters w,, r, and v,. This is best done numerically,

especially since in any real situation, there will be constraints imposed on these pa-

rameters. For three simple examples, we consider a base case with dsource = 0.11 nm,

Po =2, AE 2/ E, =2x 1073, w, = 1.0 pm, 7, = 0.1 pm, and v, = 5 x 10* cm/s (i.e.,

the second case in Table 5). We let each of the three parameters vary in turn, while

keeping the other parameters fixed. When w, is free, a minimum spot of 1.11 nm

is obtained at w, = 0.867 um. Allowing r, to vary gives a minimum of 1.21 nm
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at r, = 0.107 pm. Varying v, gives a minimum spot diameter of 0.835 nm with
v, = 1.25 x 10% cm/s. These values show that the arbitrarily chosen examples in the

previous section are fairly close to optimal.
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6 Conclusion

We have shown that a donut mode laser-atomic lens can act as a focusing optical
element for an atomic beam with very high resolution. By using particle optics
techniques, we have derived simple expressions for the first order properties of the
lens, and also all the major aberrations contributing to the spot size of a focused
atom beam. Diffraction and source size contributions to the spot size are determined
as well, and various examples are discussed. Using the expressions derived in this
paper, optimization of the lens is shown to be possible.

The main purpose of this paper has been to provide a detailed description of the
donut mode laser-atomic lens so that any future experimental work on such a lens
will have a solid basis to build on. If attained experimentally, the focal spot sizes of
approximately 1 nm discussed in this paper will open a wealth of new possibilities for
nanostructure research, microscopy, and precision measurements. Though achieving
some of the laser and atom beam par@meters required for these spot sizes may push the

limits of present technology, it is likely that in the near future they will be realizable.
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Table 1

Case  wvo(emfs) P, (W) ¢ f(pm) 2 (um) z; (um) z; (um) (Ref. [6])

A 1x104 0.1 3.66 7.04 -11.64 —4.60 -3.9
B 5 x 10* 0.1 1.22 9.85  —1.57 8.28 8.4
C “1x10° 0.1 1.06 30.1 —-0.46 29.7 29.9
D 1x10* 1.0 633 1120 -21.1 —-9.86 -7.1
E 5 x 10* 1.0 1.60 5.77  -3.57 2.20 2.3
F 1 x10° 1.0 1.18 11.59 -1.30 10.29 10.4

Table 1. First order properties of a TEM}, laser-atomic lens for sodium with w, =
1.0 pm, L = 5.33 pm, and p, = 2. f is the focal length of the lens, z, is the position

of the principal plane, and z; is the position of the focal point for an initally parallel

atom beam.
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Table 2

v, (cm/s) PMFL (W) AMFL (rad/s)
1x10* 0.006 1.92 x 101!
5 x 10* 3.68 4.81 x 102
1x10° 58.8 1.92 x 103

Table 2. Laser power and detuning necessary to achieve minimum focal length (MFL)
conditions for three atomic velocities. Results are for sodium atoms, with w, = 1.0 pum

and p, = 2.

43




Table 3

Case /\dB 6sph 5chrom 6spont
A 0172 006  0.105  0.087
B 00345 111 0157  0.070
C 00172 1.75  0.184  0.105
D 0172 002 0102  0.160
E  0.0345 050  0.129  0.024
F 00172 124  0.163  0.032

baip
0.015
2.32
5.04

0.001
0.93
3.67

5diﬂ'r 5source
7.40 0.14
2.07 0.20
3.17 0.60
11.8 0.22
1.21 0.12
1.22 0.23

5tot

7.40
3.32
6.24

11.8

- 1.62

4.07

Table 3. FWHM spot diameters in nm arising from each of the contributions discussed

in this paper for the six cases of Table 1. Spherical aberration, é,pn; chromatic aberra-

tion, Schr; Spontaneous emission aberration, dspone; dipole fluctuation aberration, ddip;

diffraction, 84} source size, Ssource- The fractional energy spread in the atom beam

AE 2/E, =2 X 10-3. The source radius is 0.1 um, located at z, = —1 cm. ;o is

the quadrature sum of all contributions.
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Table 4
Case 20, 20,(Ref. [6])

A 110 7.0
B 3.09 3.0
C 472 4.7
D 173 6.3
E 181 1.7
F1.82 1.8

Table 4. Comparison with Ref. [6] (GG) of 1/e? spot diameters 20, for a Gaussian
atomic beam. Diameters are given in nm at the focus for the six cases of Table 1,
ignoring all other spot size contributions. A waist radius of o, = 0.07 pm located at

z2=-3L = —15.99 um is assumed.
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vo(cm/s) Ssph

1 x10* 0.27
5x 10 0.27
1x10° 0.27

Table 5

6chrom 6spont
0.118 0.172
0.118 0.016
0.118 0.005

baip

0.18
0.40
0.57

Oaifie

5.61
1.12
0.56

650\1!‘0 e

0.11
0.11
0.11

6tot

5.63
1.23
0.86

Table 5. FWHM spot diameters in nanometers at the minimum focal length condition

for sodium atoms at three atomic velocities. Laser power and detuning are given in

Table 2; w, = 1.0 um, p, = 2. Spherical aberration, ésph; chromatic aberration, cns;

spontaneous emission aberration, 8spont; dipole fluctuation aberration, éqip; diffraction,

Sdific; Source size, Sgource. The fractional energy spread in the atom beam AE, 3/ E, =

2 x 103, The source radius is 0.1 um, located at z, = —1 cm. 6y, is the quadrature

sum of all contributions.
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Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure Captions

Laser focusing of atoms in a TEMg, (“donut”) mode laser beam. Cross
sectional view of the focus of the laser beam, with laser intensity repre-
sented by a gray scale. The atom beam propagates coaxially with the

laser beam, being focused by the gradient in the laser intensity.

Sample trajectory, described by eq. (16), of an atom initially travelling
parallel to the z-axis at a radius of 0.1 pm. The locations of the focal
point and the principal plane are shown, along with the definitions of the

angle ¢ and the focal length f. For this trajectory, ¢ = 1.42.

Focal length f and principal plane location zp as a function of ¢. Note

focal length has a minimum at q =2, where z, = —f.

Trajectory Ri(Z) used in determining aberration coefficients for finite
object and image distances. The ray crosses the z-axis at the object
position z, with slope «,, and again at the image position z; With slope

;. For this particular ray, a, = 0.025, ¢=115,and L = 5.32 um.

Ray traces of atomic trajectories through a donut mode laser-atomic lens.
(a) Cases A-C of Table 1, P, = 0.1 W, v, = 1 x 10%, 5 x 104, and 1'x 10°
cm/s. (b) Cases D-F of Table 1, P, = 1.0 W, v, = 1 x 10%, 5 x 104, and

1 x 10° cm/s. (c) Minimum focal length condition, with qg=2.
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